Partial Recursive Functions in Martin-Löf Type Theory
نویسنده
چکیده
In this article we revisit the approach by Bove and Capretta for formulating partial recursive functions in Martin-Löf Type Theory by indexed inductive-recursive definitions. We will show that all inductiverecursive definitions used there can be replaced by inductive definitions. However, this encoding results in an additional technical overhead. In order to obtain directly executable partial recursive functions, we introduce restrictions on the indexed inductive-recursive definitions used. Then we introduce a data type of partial recursive functions. This allows to define higher order partial recursive functions like the map functional, which depend on other partial recursive functions. This data type will be based on the closed formalisation of indexed inductive-recursive definitions introduced by Dybjer and the author. All elements of this data type will represent partial recursive functions, and the set of partial recursive functions will be closed under the standard operations for forming partial recursive functions, and under the total functions.
منابع مشابه
PROOF THEORY OF MARTIN - LÖF TYPE THEORY . AN OVERVIEW 1 Anton SETZER
We give an overview over the historic development of proof theory and the main techniques used in ordinal theoretic proof theory. We argue, that in a revised Hilbert’s programme, ordinal theoretic proof theory has to be supplemented by a second step, namely the development of strong equiconsistent constructive theories. Then we show, how, as part of such a programme, the proof theoretic analysi...
متن کاملA Data Type of Partial Recursive Functions in Martin-Löf Type Theory
In this article we investigate how to represent partial-recursive functions in Martin-Löf’s type theory. Our representation will be based on the approach by Bove and Capretta, which makes use of indexed inductive-recursive definitions (IIRD). We will show how to restrict the IIRD used so that we obtain directly executable partial recursive functions, Then we introduce a data type of partial rec...
متن کاملComplexity of Randomness Notions
Schnorr famously proved that Martin-Löf-randomness of a sequence A can be characterised via the complexity of A’s initial segments. Nies, Stephan and Terwijn as well as independently Miller showed that Kolmogorov randomness coincides with Martin-Löf randomness relative to the halting problem K; that is, a set A is Martin-Löf random relative to K iff there is no function f such that for all m an...
متن کاملInitial Segment Complexities of Randomness Notions
Schnorr famously proved that Martin-Löf-randomness of a sequence A can be characterised via the complexity of A’s initial segments. Nies, Stephan and Terwijn as well as independently Miller showed that Kolmogorov randomness coincides with Martin-Löf randomness relative to the halting problem K; that is, a set A is Martin-Löf random relative to K iff there is no function f such that for all m an...
متن کاملIndexed Induction-Recursion
An indexed inductive definition (IID) is a simultaneous inductive definition of an indexed family of sets. An inductive-recursive definition (IRD) is a simultaneous inductive definition of a set and a recursive definition of a function on that set. An indexed inductive-recursive definition (IIRD) is a combination of both. We present a closed theory which allows us to introduce all IIRD in a nat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006